Figure 7.6: State feedback control of a steering system

From FBSwiki
Revision as of 01:42, 29 November 2024 by Murray (talk | contribs) (Created page with "{{Figure |Chapter=State Feedback |Figure number=7.6 |Sort key=706 |Figure title=State feedback control of a steering system |GitHub URL=https://github.com/murrayrm/fbs2e-pytho...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Chapter State Feedback
Figure number 7.6
Figure title State feedback control of a steering system
GitHub URL https://github.com/murrayrm/fbs2e-python/blob/main/example-7.4-steering place.py
Requires python-control

Figure-7.6-steering place.png

Figure 7.6: State feedback control of a steering system. Unit step responses (from zero initial condition) obtained with controllers designed with , 0.7, and 1 [rad/s] are shown in (a). The dashed lines indicate % deviations from the setpoint. Notice that response speed increases with increasing , but that large also give large initial control actions. Unit step responses obtained with a controller designed with and , 0.7, and 1 are shown in (b).

<nowiki>
  1. example-7.4-steering_place.py - <Short description>
  2. RMM, 28 Nov 2024
  3. Figure 7.6: State feedback control of a steering system. Unit step
  4. responses (from zero initial condition) obtained with controllers
  5. designed with zeta_c = 0.7 and omega_c = 0.5, 0.7, and 1 [rad/s] are
  6. shown in (a). The dashed lines indicate ±5% deviations from the
  7. setpoint. Notice that response speed increases with increasing omega_c,
  8. but that large omega_c also give large initial control actions. Unit step
  9. responses obtained with a controller designed with omega_c = 0.7 and
  10. zeta_c = 0.5, 0.7, and 1 are shown 2in (b).

import control as ct import numpy as np import matplotlib.pyplot as plt ct.use_fbs_defaults()

  1. System dynamics
  1. Get the normalized linear dynamics

from steering import linearize_lateral sys = linearize_lateral(normalize=True, output_full_state=True)

  1. Function to place the poles at desired values

def steering_place(sys, omega, zeta):

   # Get the pole locations based on omega and zeta
   desired_poly = np.polynomial.Polynomial([omega**2, 2 * zeta * omega, 1])
   return ct.place(sys.A, sys.B, desired_poly.roots())
  1. Set up the plotting grid to match the layout in the book

fig = plt.figure(constrained_layout=True) gs = fig.add_gridspec(3, 14) # allow some space in the middle left = slice(0, 6) right = slice(7, 13)

  1. (a) Unit step response for varying omega_c

ax_pos = fig.add_subplot(gs[0, left]) ax_delta = fig.add_subplot(gs[1, left]) ax_pos.set_title(

   r"(a) Unit step response for varying $\omega_c$", size='medium')

timepts = np.linspace(0, 20) zeta_c = 0.7 for omega_c in [0.5, 0.7, 1]:

   # Compute the gains for the controller
   K = steering_place(sys, omega_c, zeta_c)
   kf = omega_c**2
   # Compute the closed loop system
   clsys = ct.feedback(sys, K) * kf
   # Simulate the closed loop dynamics
   response = ct.forced_response(clsys, timepts, 1, X0=0)
   ax_pos.plot(response.time, response.states[0], 'b')
   ax_delta.plot(response.time, (kf - K @ response.states)[0], 'b')
  1. Label the plot

ax_pos.set_ylabel(r"Lateral position $y/b$") ax_delta.set_xlabel(r"Normalized time $v_0 t/b$") ax_delta.set_ylabel(r"Steering angle $\delta$ [rad]")

ax_pos.axhline(0.95, color='k', linestyle='--', linewidth=0.5) ax_pos.axhline(1.05, color='k', linestyle='--', linewidth=0.5) ax_pos.annotate(

   "", xy=(3.5, 0.3), xytext=[0, 0.8], arrowprops={'arrowstyle': '<-'})

ax_pos.text(3.6, 0.25, r"$\omega_c$")

ax_delta.annotate(

   "", xy=(4, 0.1), xytext=(0, -0.2), arrowprops={'arrowstyle': '<-'})

ax_delta.text(3.5, 0.15, r"$\omega_c$")

  1. (b) Unit step response for varying zeta_c

ax_pos = fig.add_subplot(gs[0, right], sharey=ax_pos) ax_delta = fig.add_subplot(gs[1, right], sharey=ax_delta) ax_pos.set_title(

   r"(b) Unit step response for varying $\zeta_c$", size='medium')

timepts = np.linspace(0, 20) omega_c = 0.7 for zeta_c in [0.5, 0.7, 1]:

   # Compute the gains for the controller
   K = steering_place(sys, omega_c, zeta_c)
   kf = omega_c**2
   # Compute the closed loop system
   clsys = ct.feedback(sys, K) * kf
   # Simulate the closed loop dynamics
   response = ct.forced_response(clsys, timepts, 1, X0=0)
   ax_pos.plot(response.time, response.states[0], 'b')
   ax_delta.plot(response.time, (kf - K @ response.states)[0], 'b')
  1. Label the plot

ax_pos.set_ylabel(r"Lateral position $y/b$") ax_delta.set_xlabel(r"Normalized time $v_0 t/b$") ax_delta.set_ylabel(r"Steering angle $\delta$ [rad]")

ax_pos.axhline(0.95, color='k', linestyle='--', linewidth=0.5) ax_pos.axhline(1.05, color='k', linestyle='--', linewidth=0.5) ax_pos.annotate(

   "", xy=(1.7, 1.15), xytext=(5.2, 0.6), arrowprops={'arrowstyle': '<-'})

ax_pos.text(5.5, 0.5, r"$\zeta_c$")

ax_delta.annotate(

   "", xy=(5.5, -0.2), xytext=(3.5, 0.15), arrowprops={'arrowstyle': '<-'})

ax_delta.text(3, 0.2, r"$\zeta_c$")

  1. Save the figure

fig.align_ylabels() plt.savefig("figure-7.4-steering_place.png", bbox_inches='tight') </math>