Difference between revisions of "Errata: Example 8.10 missing factor of v, a1 and a2 flipped"

From FBSwiki
Jump to navigation Jump to search
Line 14: Line 14:
 
       \begin{bmatrix} 0 & 0 & -{\color{blue} v} \sin\theta \\ 0 & 0 & {\color{blue} v} \cos\theta \\ 0 & 0 & 0 \end{bmatrix}
 
       \begin{bmatrix} 0 & 0 & -{\color{blue} v} \sin\theta \\ 0 & 0 & {\color{blue} v} \cos\theta \\ 0 & 0 & 0 \end{bmatrix}
 
       \right|_{(x_\text{d}, u_\text{d})}
 
       \right|_{(x_\text{d}, u_\text{d})}
     = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & v_\text{r} \\ 0 & 0 & 0 \end{bmatrix}, \\
+
     = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & v_\text{r} \\ 0 & 0 & 0 \end{bmatrix},
 
</math></center>
 
</math></center>
 
This leads to an error in the definition of <math>w_2</math> later in the example.  In addition, the coefficients <math>a_1</math> and <math>a_2</math> are swapped, so the definition of <math>w_2</math> should be:
 
This leads to an error in the definition of <math>w_2</math> later in the example.  In addition, the coefficients <math>a_1</math> and <math>a_2</math> are swapped, so the definition of <math>w_2</math> should be:
Line 22: Line 22:
 
The final controller then becomes
 
The final controller then becomes
 
<center><math>
 
<center><math>
   \begin{bmatrix} v \\ \phi} =
+
   \begin{bmatrix} v \\ \phi \end{bmatrix} =
 
   -\underbrace{\begin{bmatrix}  
 
   -\underbrace{\begin{bmatrix}  
 
     \lambda_1 & 0 & 0 \\
 
     \lambda_1 & 0 & 0 \\

Revision as of 04:50, 7 October 2021

Chapter Output Feedback
Page 8-28
Line -4
Version 3.1.5
Date 6 Oct 2021

Example 8.10 (Steering control with velocity scheduling) is missing a factor of in the definition of that propagates through the example. In addition, the coefficients and are swapped in the definition of .

The equation for should read:

This leads to an error in the definition of later in the example. In addition, the coefficients and are swapped, so the definition of should be:

The final controller then becomes

Failed to parse (unknown function "\begin{bmatrix}"): {\displaystyle \begin{bmatrix} v \\ \phi \end{bmatrix} = -\underbrace{\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \dfrac{a_2 l}{v_\text{r}^2} & \dfrac{a_1 l}{v_\text{r}\end{bmatrix} }_{K_\text{d}} \underbrace{\begin{bmatrix} x - v_\text{r} t \\ y - y_\text{r} \\ \theta}\end{bmatrix}_{e} + \underbrace{\begin{bmatrix} v_\text{r} \\ 0}\vphantom{\bmat{0 \\ 0 \\ 0}}\end{bmatrix}_{u_\text{d}}. }