Difference between revisions of "Figure 5.8: Phase portrait and time domain simulation for a system with a single asymptotically stable equilibrium point"
Jump to navigation
Jump to search
(Created page with "{{Figure |Chapter=Dynamic Behavior |Figure number=5.8 |Sort key=508 |Figure title=Phase portrait and time domain simulation for a system with a single asymptotically stable eq...") |
|||
Line 11: | Line 11: | ||
| align=center | <math> \begin{aligned} \dot x_1 &= x_2 \\ \dot x_2 &= -x_1 \end{aligned} </math> | | align=center | <math> \begin{aligned} \dot x_1 &= x_2 \\ \dot x_2 &= -x_1 \end{aligned} </math> | ||
|- align=bottom | |- align=bottom | ||
− | | rowspan=2 | [[Image:figure-5. | + | | rowspan=2 | [[Image:figure-5.8-asystable_eqpt-time.png]] |
|- | |- | ||
|} | |} |
Revision as of 15:59, 7 April 2024
Chapter | Dynamic Behavior |
---|---|
Figure number | 5.8 |
Figure title | Phase portrait and time domain simulation for a system with a single asymptotically stable equilibrium point |
GitHub URL | https://github.com/murrayrm/fbs2e-python/blob/main/figure-5.8-asystable-eqpt.py |
Requires | python-control |
Figure 5.7: Phase portrait and time domain simulation for a system with a single stable equilibrium point. The equilibrium point xe at the origin is stable since all trajectories that start near xe stay near xe.
# asystable_eqpt.py - plots for stable equlibrium point # RMM, 7 Apr 2024 import matplotlib.pyplot as plt import numpy as np from math import pi import control as ct import control.phaseplot as pp import fbs # FBS plotting customizations m, b, k = 1, 1, 1 linsys = ct.ss([[0, 1], [-k/m, -b/m]], [[0], [1]], np.eye(2), 0) # Draw the phase portrait fbs.figure() ct.phase_plane_plot(linsys, [-1, 1, -1, 1], 5) plt.gca().set_aspect('equal') plt.suptitle("") fbs.savefig('figure-5.8.asystable_eqpt-pp.png') fbs.figure('321') plt.axis([0, 10, -2.5, 2.5]) timepts = np.linspace(0, 10) response = ct.input_output_response(linsys, timepts, 0, [1, 0]) plt.plot(response.time, response.outputs[0], 'b', label="$x_1$") plt.plot(response.time, response.outputs[1], 'r--', label="$x_2$") plt.xlabel("Time $t$") plt.ylabel("$x_1, x_2$") plt.legend(loc='upper right', ncols=2, frameon=False) fbs.savefig('figure-5.8-asystable_eqpt-time.png')