Difference between revisions of "Figure 8.13: Vehicle steering using gain scheduling"
Jump to navigation
Jump to search
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
|Chapter=Output Feedback | |Chapter=Output Feedback | ||
|Figure number=8.13 | |Figure number=8.13 | ||
+ | |Sort key=813 | ||
|Figure title=Vehicle steering using gain scheduling | |Figure title=Vehicle steering using gain scheduling | ||
+ | |GitHub URL=https://github.com/murrayrm/fbs2e-python/blob/main/example-8.10-steering_gainsched.py | ||
+ | |Requires=fbs.py | ||
}} | }} | ||
[[Image:figure-8.13-steering-gainsched.png]] | [[Image:figure-8.13-steering-gainsched.png]] | ||
Line 9: | Line 12: | ||
<nowiki> | <nowiki> | ||
− | # | + | # example-8.10-steering_gainsched.py - gain scheduling for vehicle steering |
− | # RMM, 8 May 2019 | + | # RMM, 8 May 2019 |
import numpy as np | import numpy as np | ||
import control as ct | import control as ct | ||
from cmath import sqrt | from cmath import sqrt | ||
− | import matplotlib.pyplot as | + | import matplotlib.pyplot as plt |
+ | import fbs # FBS plotting customizations | ||
# | # | ||
Line 51: | Line 55: | ||
# Define the vehicle steering dynamics as an input/output system | # Define the vehicle steering dynamics as an input/output system | ||
− | vehicle = ct. | + | vehicle = ct.nlsys( |
vehicle_update, vehicle_output, states=3, name='vehicle', | vehicle_update, vehicle_output, states=3, name='vehicle', | ||
inputs=('v', 'phi'), | inputs=('v', 'phi'), | ||
Line 96: | Line 100: | ||
# Define the controller as an input/output system | # Define the controller as an input/output system | ||
− | controller = ct. | + | controller = ct.nlsys( |
None, control_output, name='controller', # static system | None, control_output, name='controller', # static system | ||
inputs=('x', 'y', 'theta', 'xd', 'yd', 'thetad', # system inputs | inputs=('x', 'y', 'theta', 'xd', 'yd', 'thetad', # system inputs | ||
Line 121: | Line 125: | ||
# Define the trajectory generator as an input/output system | # Define the trajectory generator as an input/output system | ||
− | trajgen = ct. | + | trajgen = ct.nlsys( |
None, trajgen_output, name='trajgen', | None, trajgen_output, name='trajgen', | ||
inputs=('vref', 'yref'), | inputs=('vref', 'yref'), | ||
Line 133: | Line 137: | ||
# full vehicle state plus the velocity of the vehicle. | # full vehicle state plus the velocity of the vehicle. | ||
# | # | ||
− | # We construct the system using the | + | # We construct the system using the interconnect function and using signal |
− | # | + | # labels to keep track of everything. |
steering = ct.interconnect( | steering = ct.interconnect( | ||
Line 155: | Line 159: | ||
# Set up a figure for plotting the results | # Set up a figure for plotting the results | ||
− | + | fbs.figure('mlh') | |
# Plot the reference trajectory for the y position | # Plot the reference trajectory for the y position | ||
− | + | plt.plot([0, 5], [yref, yref], 'k-', linewidth=0.6) | |
# Find the signals we want to plot | # Find the signals we want to plot | ||
Line 171: | Line 175: | ||
# Plot the reference speed | # Plot the reference speed | ||
− | + | plt.plot([0, 5], [vref, vref], 'k-', linewidth=0.6) | |
# Plot the system output | # Plot the system output | ||
− | y_line, = | + | y_line, = plt.plot(tout, yout[y_index, :], 'r-') # lateral position |
− | v_line, = | + | v_line, = plt.plot(tout, yout[v_index, :], 'b--') # vehicle velocity |
# Add axis labels | # Add axis labels | ||
− | + | plt.xlabel('Time [s]') | |
− | + | plt.ylabel(r'$\dot x$ [m/s], $y$ [m]') | |
− | + | plt.legend((v_line, y_line), (r'$\dot x$', '$y$'), | |
+ | loc='center right', frameon=False) | ||
# Save the figure | # Save the figure | ||
− | + | fbs.savefig('figure-8.13-steering_gainsched.png') # PNG for web | |
</nowiki> | </nowiki> |
Latest revision as of 18:45, 16 November 2024
Chapter | Output Feedback |
---|---|
Figure number | 8.13 |
Figure title | Vehicle steering using gain scheduling |
GitHub URL | https://github.com/murrayrm/fbs2e-python/blob/main/example-8.10-steering gainsched.py |
Requires | python-control, fbs.py |
Figure 8.13: Vehicle steering using gain scheduling. (a) Vehicle configuration consists of the x, y position of the vehicle, its angle with respect to the road, and the steering wheel angle. (b) Step responses for the vehicle lateral position (solid) and forward velocity (dashed). Gain scheduling is used to set the feedback controller gains for the different forward velocities.
# example-8.10-steering_gainsched.py - gain scheduling for vehicle steering # RMM, 8 May 2019 import numpy as np import control as ct from cmath import sqrt import matplotlib.pyplot as plt import fbs # FBS plotting customizations # # Vehicle steering dynamics # # The vehicle dynamics are given by a simple bicycle model. We take the state # of the system as (x, y, theta) where (x, y) is the position of the vehicle # in the plane and theta is the angle of the vehicle with respect to # horizontal. The vehicle input is given by (v, phi) where v is the forward # velocity of the vehicle and phi is the angle of the steering wheel. The # model includes saturation of the vehicle steering angle. # # System state: x, y, theta # System input: v, phi # System output: x, y # System parameters: wheelbase, maxsteer # def vehicle_update(t, x, u, params): # Get the parameters for the model l = params.get('wheelbase', 3.) # vehicle wheelbase phimax = params.get('maxsteer', 0.5) # max steering angle (rad) # Saturate the steering input phi = np.clip(u[1], -phimax, phimax) # Return the derivative of the state return np.array([ np.cos(x[2]) * u[0], # xdot = cos(theta) v np.sin(x[2]) * u[0], # ydot = sin(theta) v (u[0] / l) * np.tan(phi) # thdot = v/l tan(phi) ]) def vehicle_output(t, x, u, params): return x # return x, y, theta (full state) # Define the vehicle steering dynamics as an input/output system vehicle = ct.nlsys( vehicle_update, vehicle_output, states=3, name='vehicle', inputs=('v', 'phi'), outputs=('x', 'y', 'theta')) # # Gain scheduled controller # # For this system we use a simple schedule on the forward vehicle velocity and # place the poles of the system at fixed values. The controller takes the # current and desired vehicle position and orientation plus the velocity # velocity as inputs, and returns the velocity and steering commands. # # System state: none # System input: x, y, theta, xd, yd, thetad, vd, phid # System output: v, phi # System parameters: longpole, latomega_c, latzeta_c # def control_output(t, x, u, params): # Get the controller parameters longpole = params.get('longpole', -2.) latomega_c = params.get('latomega_c', 2) latzeta_c = params.get('latzeta_c', 0.5) l = params.get('wheelbase', 3) # Extract the system inputs and compute the errors x, y, theta, xd, yd, thetad, vd, phid = u ex, ey, etheta = x - xd, y - yd, theta - thetad # Determine the controller gains lambda1 = -longpole a1 = 2 * latzeta_c * latomega_c a2 = latomega_c**2 # Compute and return the control law v = -lambda1 * ex # leave off feedforward to generate transient if vd != 0: phi = phid - ((a2 * l) / vd**2) * ey - ((a1 * l) / vd) * etheta else: # We aren't moving, so don't turn the steering wheel phi = phid return np.array([v, phi]) # Define the controller as an input/output system controller = ct.nlsys( None, control_output, name='controller', # static system inputs=('x', 'y', 'theta', 'xd', 'yd', 'thetad', # system inputs 'vd', 'phid'), outputs=('v', 'phi') # system outputs ) # # Reference trajectory subsystem # # The reference trajectory block generates a simple trajectory for the system # given the desired speed (vref) and lateral position (yref). The trajectory # consists of a straight line of the form (vref * t, yref, 0) with nominal # input (vref, 0). # # System state: none # System input: vref, yref # System output: xd, yd, thetad, vd, phid # System parameters: none # def trajgen_output(t, x, u, params): vref, yref = u return np.array([vref * t, yref, 0, vref, 0]) # Define the trajectory generator as an input/output system trajgen = ct.nlsys( None, trajgen_output, name='trajgen', inputs=('vref', 'yref'), outputs=('xd', 'yd', 'thetad', 'vd', 'phid')) # # System construction # # The input to the full closed loop system is the desired lateral position and # the desired forward velocity. The output for the system is taken as the # full vehicle state plus the velocity of the vehicle. # # We construct the system using the interconnect function and using signal # labels to keep track of everything. steering = ct.interconnect( # List of subsystems (trajgen, controller, vehicle), name='steering', # System inputs inplist=['trajgen.vref', 'trajgen.yref'], inputs=['yref', 'vref'], # System outputs outlist=['vehicle.x', 'vehicle.y', 'vehicle.theta', 'controller.v', 'controller.phi'], outputs=['x', 'y', 'theta', 'v', 'phi'] ) # Set up the simulation conditions yref = 1 T = np.linspace(0, 5, 100) # Set up a figure for plotting the results fbs.figure('mlh') # Plot the reference trajectory for the y position plt.plot([0, 5], [yref, yref], 'k-', linewidth=0.6) # Find the signals we want to plot y_index = steering.find_output('y') v_index = steering.find_output('v') # Do an iteration through different speeds for vref in [8, 10, 12]: # Simulate the closed loop controller response tout, yout = ct.input_output_response( steering, T, [vref * np.ones(len(T)), yref * np.ones(len(T))]) # Plot the reference speed plt.plot([0, 5], [vref, vref], 'k-', linewidth=0.6) # Plot the system output y_line, = plt.plot(tout, yout[y_index, :], 'r-') # lateral position v_line, = plt.plot(tout, yout[v_index, :], 'b--') # vehicle velocity # Add axis labels plt.xlabel('Time [s]') plt.ylabel(r'$\dot x$ [m/s], $y$ [m]') plt.legend((v_line, y_line), (r'$\dot x$', '$y$'), loc='center right', frameon=False) # Save the figure fbs.savefig('figure-8.13-steering_gainsched.png') # PNG for web