Difference between revisions of "Figure 3.2: Illustration of a state model"

From FBSwiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
|Chapter=System Modeling
 
|Chapter=System Modeling
 
|Figure number=3.2
 
|Figure number=3.2
 +
|Sort key=302
 
|Figure title=Illustration of a state model
 
|Figure title=Illustration of a state model
 
|GitHub URL=https://github.com/murrayrm/fbs2e-python/blob/main/figure-3.2-state_model.py
 
|GitHub URL=https://github.com/murrayrm/fbs2e-python/blob/main/figure-3.2-state_model.py
 
}}
 
}}
[[Image:figure-3.2-state_model.png|width=480px]]
+
[[Image:figure-3.2-state_model.png|640px]]
  
 
'''Figure 3.2''': Illustration of a state model. A state model gives the rate of change of the state as a function of the state. The plot on the left shows the evolution of the state as a function of time. The plot on the right, called a phase portrait, shows the evolution of the states relative to each other, with the velocity of the state denoted by arrows.
 
'''Figure 3.2''': Illustration of a state model. A state model gives the rate of change of the state as a function of the state. The plot on the left shows the evolution of the state as a function of time. The plot on the right, called a phase portrait, shows the evolution of the states relative to each other, with the velocity of the state denoted by arrows.
Line 35: Line 36:
 
#
 
#
 
# The nonlinear damping is implemented as a change in the linear damping
 
# The nonlinear damping is implemented as a change in the linear damping
# coefficient at a small velocity.  This is intended to roughly correspond  
+
# coefficient at a small velocity.  This is intended to roughly correspond
# to some sort of stiction (and give an interesting phase portrait).  The  
+
# to some sort of stiction (and give an interesting phase portrait).  The
 
# default parameters for the system are given by
 
# default parameters for the system are given by
 
#
 
#
Line 47: Line 48:
 
# This corresponds to a fairly lightly damped oscillator away from the origin.
 
# This corresponds to a fairly lightly damped oscillator away from the origin.
  
def nlspringmass(x, t, u=0, m=1, k=1, b1=2, b2=0.01, dth=0.2):
+
def _nlspringmass(t, x, u, params):
 +
    m = params.get('m', 1)
 +
    k = params.get('k', 1)
 +
    b1 = params.get('b1', 2)
 +
    b2 = params.get('b2', 0.01)
 +
    dth = params.get('dth', 0.2)
 +
 
 
     # Compute the friction force
 
     # Compute the friction force
 
     if abs(x[1]) < dth:
 
     if abs(x[1]) < dth:
Line 60: Line 67:
 
     # Return the time derivative of the state
 
     # Return the time derivative of the state
 
     return np.array([x[1], -k/m * x[0] - Fb/m])
 
     return np.array([x[1], -k/m * x[0] - Fb/m])
 +
nlspringmass = ct.nlsys(_nlspringmass, None, states=2, inputs=0, outputs=2)
  
 
#
 
#
Line 67: Line 75:
  
 
t = np.linspace(0, 16, 100)
 
t = np.linspace(0, 16, 100)
y = sp.integrate.odeint(nlspringmass, [2, 0], t)
+
resp = ct.input_output_response(nlspringmass, t, 0, [2, 0])
 +
y = resp.outputs
  
plt.plot(t, y[:, 0], '-', t, y[:, 1], '--')
+
plt.plot(t, y[0], '-', t, y[1], '--')
 
plt.xlabel('Time $t$ [s]')
 
plt.xlabel('Time $t$ [s]')
plt.ylabel('Position $q$ [m], velocity $\dot q$̇ [m/s]')
+
plt.ylabel(r'Position $q$ [m], velocity $\dot q$̇ [m/s]')
 
plt.title('Time plot')
 
plt.title('Time plot')
 
plt.legend(['Position $q$', 'Velocity $v$'])
 
plt.legend(['Position $q$', 'Velocity $v$'])
Line 78: Line 87:
 
# (b) Generate a phase plot for the damped oscillator
 
# (b) Generate a phase plot for the damped oscillator
 
#
 
#
plt.subplot(2, 2, 2)
+
ax = plt.subplot(2, 2, 2)
  
ct.phase_plot(
+
cplt = ct.phase_plane_plot(
 
     nlspringmass,              # dynamics
 
     nlspringmass,              # dynamics
     (-1, 1, 8), (-1, 1, 8),    # X, Y range, npoints
+
     [-1, 1, -1, 1],            # bounds of the plot
     scale=0.2,
+
    gridspec=[8, 8],           # number of points for vectorfield
     X0=[[-1, 0.4], [0.1, 1], [1, -0.4], [-0.1, -1]])
+
     plot_vectorfield=True,      # plot vectorfield
 +
    plot_streamlines=False,     # plot streamlines separately
 +
    plot_separatrices=False,   # leave off separatrices
 +
     ax=ax
 +
)
 +
ct.phaseplot.streamlines(      # Plot streamlines from selected points
 +
    nlspringmass,
 +
     np.array([[-1, 0.4], [0.1, 1], [1, -0.4], [-0.1, -1]]),
 +
    10, ax=ax
 +
)
  
 
plt.xlabel('Position $q$ [m]')
 
plt.xlabel('Position $q$ [m]')
plt.ylabel('Velocity $\dot q$ [m/s]')
+
plt.ylabel(r'Velocity $\dot q$ [m/s]')
 
plt.title('Phase portrait')
 
plt.title('Phase portrait')
 
plt.axis([-1, 1, -1, 1])
 
plt.axis([-1, 1, -1, 1])

Latest revision as of 18:34, 16 November 2024

Chapter System Modeling
Figure number 3.2
Figure title Illustration of a state model
GitHub URL https://github.com/murrayrm/fbs2e-python/blob/main/figure-3.2-state model.py
Requires python-control

Figure-3.2-state model.png

Figure 3.2: Illustration of a state model. A state model gives the rate of change of the state as a function of the state. The plot on the left shows the evolution of the state as a function of time. The plot on the right, called a phase portrait, shows the evolution of the states relative to each other, with the velocity of the state denoted by arrows.

# figure-3.2-state_mode.py - illustration of a state model
# RMM, 2 Jul 2021
#
# Figure 3.2: Illustration of a state model. A state model gives the rate of
# change of the state as a function of the state. The plot on the left shows
# the evolution of the state as a function of time. The plot on the right,
# called a phase portrait, shows the evolution of the states relative to
# each other, with the velocity of the state denoted by arrows.
#

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import control as ct

#
# Spring mass system with nonlinear dampling
#
# This function gives the dynamics for a dampled oscillator with nonlinear
# damping.  The states of the system are
#
#   x[0]        position
#   x[1]        velocity
#
# The nonlinear damping is implemented as a change in the linear damping
# coefficient at a small velocity.  This is intended to roughly correspond
# to some sort of stiction (and give an interesting phase portrait).  The
# default parameters for the system are given by
#
#   m = 1       mass, kg
#   k = 1       spring constant, N/m
#   b1 = 1      damping constant near origin, N-sec/m
#   b2 = 0.01   damping constant away from origin, N-sec/m
#   dth = 0.5   threshold for switching between damping
#
# This corresponds to a fairly lightly damped oscillator away from the origin.

def _nlspringmass(t, x, u, params):
    m = params.get('m', 1)
    k = params.get('k', 1)
    b1 = params.get('b1', 2)
    b2 = params.get('b2', 0.01)
    dth = params.get('dth', 0.2)

    # Compute the friction force
    if abs(x[1]) < dth:
        Fb = b1 * x[1];
    elif x[1] < 0:
        Fb = -b1 * dth \
            + b2 * (x[1] + dth);
    else:
        Fb = b1 * dth \
            + b2 * (x[1] - dth);

    # Return the time derivative of the state
    return np.array([x[1], -k/m * x[0] - Fb/m])
nlspringmass = ct.nlsys(_nlspringmass, None, states=2, inputs=0, outputs=2)

#
# (a) Simulation of the nonlinear spring mass system
#
plt.subplot(2, 2, 1)

t = np.linspace(0, 16, 100)
resp = ct.input_output_response(nlspringmass, t, 0, [2, 0])
y = resp.outputs

plt.plot(t, y[0], '-', t, y[1], '--')
plt.xlabel('Time $t$ [s]')
plt.ylabel(r'Position $q$ [m], velocity $\dot q$̇ [m/s]')
plt.title('Time plot')
plt.legend(['Position $q$', 'Velocity $v$'])

#
# (b) Generate a phase plot for the damped oscillator
#
ax = plt.subplot(2, 2, 2)

cplt = ct.phase_plane_plot(
    nlspringmass,               # dynamics
    [-1, 1, -1, 1],             # bounds of the plot
    gridspec=[8, 8],            # number of points for vectorfield
    plot_vectorfield=True,      # plot vectorfield
    plot_streamlines=False,     # plot streamlines separately
    plot_separatrices=False,    # leave off separatrices
    ax=ax
)
ct.phaseplot.streamlines(       # Plot streamlines from selected points
    nlspringmass,
    np.array([[-1, 0.4], [0.1, 1], [1, -0.4], [-0.1, -1]]),
    10, ax=ax
)

plt.xlabel('Position $q$ [m]')
plt.ylabel(r'Velocity $\dot q$ [m/s]')
plt.title('Phase portrait')
plt.axis([-1, 1, -1, 1])

plt.tight_layout()