Difference between revisions of "Figure 2.12: Responses of a static nonlinear system"

From FBSwiki
Jump to navigation Jump to search
(Created page with "{{Figure |Chapter=Feedback Principles |Figure number=12 |Figure title=Responses of a static nonlinear system |GitHub URL=https://github.com/murrayrm/fbs2e-python/blob/main/fig...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{Figure
 
{{Figure
 
|Chapter=Feedback Principles
 
|Chapter=Feedback Principles
|Figure number=12
+
|Figure number=2.12
 +
|Sort key=212
 
|Figure title=Responses of a static nonlinear system
 
|Figure title=Responses of a static nonlinear system
 
|GitHub URL=https://github.com/murrayrm/fbs2e-python/blob/main/figure-2.12,14-static_nlsys.py
 
|GitHub URL=https://github.com/murrayrm/fbs2e-python/blob/main/figure-2.12,14-static_nlsys.py
 
}}
 
}}
[[Image:figure-2.12,14-static_nlsys.png]]
+
[[Image:figure-2.12-static_nlsys.png|640px]]
  
 
'''Figure 2.12''': Responses of a static nonlinear system. The left figure shows the input/output relations of the open loop systems and the right figure shows responses to the input signal (2.38). The ideal response is shown with solid bold lines. The nominal response of the nonlinear system is shown using dashed bold lines and the responses for different parameter values are shown using thin lines. Notice the large variability in the responses.
 
'''Figure 2.12''': Responses of a static nonlinear system. The left figure shows the input/output relations of the open loop systems and the right figure shows responses to the input signal (2.38). The ideal response is shown with solid bold lines. The nominal response of the nonlinear system is shown using dashed bold lines and the responses for different parameter values are shown using thin lines. Notice the large variability in the responses.
Line 80: Line 81:
 
ax2.set_ylim(-1, 5)
 
ax2.set_ylim(-1, 5)
 
ax2.set_xlim(0, 2)
 
ax2.set_xlim(0, 2)
 
plt.tight_layout()
 
 
#
 
# Closed loop response
 
#
 
 
# Create an I/O system representing the static nonlinearity
 
P = ct.NonlinearIOSystem(
 
    updfcn=None,
 
    outfcn=lambda t, x, u, params: F(u, params['a'], params['b']),
 
    inputs=['u'], outputs=['y'], name='P')
 
 
# Integral controller
 
ki = 1000
 
C = ct.tf2ss(ct.tf([ki], [1, 0]))
 
 
# Closed loop system
 
sys = ct.feedback(P * C, 1)
 
 
# Set up the plots for Figure 2.12
 
fig, [ax1, ax2, ax3] = plt.subplots(1, 3, figsize=(6, 3))
 
 
# Generate the input/output curves and system responses
 
for a in [0.1, 0.2, 0.5]:
 
    for b in [0, 0.5, 1, 2]:
 
        # Simulate the system dynamics
 
        t, y = ct.input_output_response(sys, t, r, params={'a':a, 'b':b})
 
       
 
        ax1.plot(r, y, 'r', linewidth=0.5);
 
        ax2.plot(t, y, 'r', linewidth=0.5)
 
        ax3.plot(t, r-y, 'r', linewidth=0.5)
 
 
# Left plot labels
 
ax1.set_title("I/O relationships")
 
ax1.set_xlabel("Input $u$")
 
ax1.set_ylabel("Output $y$")
 
 
# Draw reference line, set axis limits
 
ax1.plot(y, y, 'k-', linewidth=1.5)
 
ax1.set_ylim(-3, 3)
 
ax1.set_xlim(-2.5, 2.5)
 
 
# Center plot labels
 
ax2.set_title("Output signals")
 
ax2.set_xlabel("Time $t$")
 
ax2.set_ylabel("Output $y$")
 
 
# Draw reference line, set axis limits
 
ax2.plot(t, r, 'k-', linewidth=1)
 
ax2.set_ylim(-1, 5)
 
ax2.set_xlim(0, 2)
 
 
# Right plot labels
 
ax3.set_title("Error")
 
ax3.set_xlabel("Time $t$")
 
ax3.set_ylabel("Error $e$")
 
 
# Draw bounding line, set axis limits
 
rdot = np.diff(r)/(t[1] - t[0])    # Approximation of derivative
 
bmin = 0.1                          # See FBS2e, below equation (2.40)
 
ax3.plot(t[:-1], rdot/(bmin * ki), 'b--', linewidth=1.5)
 
ax3.set_xlim(0, 2)
 
  
 
plt.tight_layout()
 
plt.tight_layout()
 
</nowiki>
 
</nowiki>

Latest revision as of 16:29, 28 May 2023

Chapter Feedback Principles
Figure number 2.12
Figure title Responses of a static nonlinear system
GitHub URL https://github.com/murrayrm/fbs2e-python/blob/main/figure-2.12,14-static nlsys.py
Requires python-control

Figure-2.12-static nlsys.png

Figure 2.12: Responses of a static nonlinear system. The left figure shows the input/output relations of the open loop systems and the right figure shows responses to the input signal (2.38). The ideal response is shown with solid bold lines. The nominal response of the nonlinear system is shown using dashed bold lines and the responses for different parameter values are shown using thin lines. Notice the large variability in the responses.

# figure-2.12,14-static_nlsys.py - static nonlinear feedback system
# RMM, 21 Jun 2021
#
# Figure 2.12: Responses of a static nonlinear system. The left figure shows
# the in- put/output relations of the open loop systems and the right figure
# shows responses to the input signal (2.38). The ideal response is shown
# with solid bold lines. The nominal response of the nonlinear system is
# shown using dashed bold lines and the responses for different parameter
# values are shown using thin lines. Notice the large variability in the
# responses.
#
# Figure 2.14: Responses of the systems with integral feedback (ki =
# 1000). The left figure shows the input/output relationships for the closed
# loop systems, and the center figure shows responses to the input signal
# (2.38) (compare to the corresponding responses in Figure 2.12. The right
# figure shows the individual errors (solid lines) and the approximate error
# given by equation (2.42) (dashed line).
#
# Intial code contributed by Adam Matic, 26 May 2021.
#

import numpy as np
import matplotlib.pyplot as plt
import control as ct

# Static nonlinearity
def F(u, alpha, beta):
    return alpha * (u + beta * (u ** 3))

# Reference signal
t = np.linspace(0, 6, 300)
r = np.sin(t) + np.sin(np.pi * t) + np.sin((np.pi**2) * t)

#
# Open loop response
#

# Set up the plots for Figure 2.12
fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(6, 3))

# Generate the input/output curves and system responses
for a in [0.1, 0.2, 0.5]:
    for b in [0, 0.5, 1, 2]:
        y = F(r, a, b)
        ax1.plot(r, y, 'r', linewidth=0.5);
        ax2.plot(t, y, 'r', linewidth=0.5)

# Generate the nominal response
y = F(r, 0.2, 1)
ax1.plot(r, y, 'b--', linewidth=1.5);
ax2.plot(t, y, 'b--', linewidth=1.5)

# Left plot labels
ax1.set_title("I/O relationships")
ax1.set_xlabel("Input $u$")
ax1.set_ylabel("Output $y$")

# Draw reference line, set axis limits
ax1.plot(y, y, 'k-', linewidth=1.5)
ax1.set_ylim(-3, 3)
ax1.set_xlim(-2.5, 2.5)

# Right plot labels
ax2.set_title("Output signals")
ax2.set_xlabel("Time $t$")
ax2.set_ylabel("Output $y$")

# Draw reference line, set axis limits
ax2.plot(t, r, 'k-', linewidth=1.5)
ax2.set_ylim(-1, 5)
ax2.set_xlim(0, 2)

plt.tight_layout()