Figure 5.18: Bifurcation analysis of the predator–prey system
Jump to navigation
Jump to search
Chapter | Dynamic Behavior |
---|---|
Figure number | 5.18 |
Figure title | Bifurcation analysis of the predator-prey system |
GitHub URL | https://github.com/murrayrm/fbs2e-python/blob/main/example-5.16-predprey bif.py |
Requires | python-control, predprey.py |
Figure 5.18: Bifurcation analysis of the predator–prey system. (a) Parametric stability diagram showing the regions in parameter space for which the system is stable. (b) Bifurcation diagram showing the location and stability of the equilibrium point as a function of . The solid line represents a stable equilibrium point, and the dashed line represents an unstable equilibrium point. The dash-dotted lines indicate the upper and lower bounds for the limit cycle at that parameter value (computed via simulation). The nominal values of the parameters in the model are , , , , , and .
# example-5.16-predprey_bif.py - predator-prey stability analysis # RMM, 18 Nov 2024 # # Figure 5.18: Bifurcation analysis of the predator–prey system. (a) # Parametric stability diagram showing the regions in parameter space for # which the system is stable. (b) Bifurcation diagram showing the location # and stability of the equilib- rium point as a function of a. The solid # line represents a stable equilibrium point, and the dashed line # represents an unstable equilibrium point. The dash-dotted lines indicate # the upper and lower bounds for the limit cycle at that parameter value # (computed via simulation). The nominal values of the parameters in the # model are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, and r = 1.6. import control as ct import numpy as np import scipy import matplotlib.pyplot as plt ct.use_fbs_defaults() # # System dynamics # from predprey import predprey, predprey_params # Create a function to compute the real part of the largest eigenvalue def maxeig(a, c): # Initialize parameter values r, d, b, k = map(predprey_params.get, ['r', 'd', 'b', 'k']) params = {'a': a, 'c': c} # Equilibrium point from equations (4.33) and (4.34) xeq = [(c*d) / (a*b - d), (b*c*r)*(a*b*k - c*d - d*k)/(k * (a*b - d)**2)] # Linearization A = ct.linearize(predprey, xeq, 0, params=params).A return np.max(np.linalg.eig(A).eigenvalues.real) # Set up the plotting grid to match the layout in the book fig = plt.figure(constrained_layout=True) gs = fig.add_gridspec(2, 2) # # (a) Stability diagram # # To find the boundaries of stability in terms of the parameters $a$ and # $c$, we scan over the $a$ parameter and find the values of $c$ that cause # the real part of one of the eigenvalues to be zero. # ax = fig.add_subplot(gs[0, 0]) # first row, first column ax.set_title("(a) Stability diagram") avals = np.linspace(1.3, 4, 50) cvals_lower, cvals_upper = [], [] last_lower, last_upper = 5, 100 for a in avals: sol1 = scipy.optimize.root( lambda c: maxeig(a, c), last_lower, method='broyden1') if sol1.success: last_lower = sol1.x.item() cvals_lower.append(last_lower) else: print(sol1.message) cvals_lower.append(np.nan) sol2 = scipy.optimize.root(lambda c: maxeig(a, c), last_upper) if sol2.success: last_upper = sol2.x.item() cvals_upper.append(last_upper) else: cvals_upper.append(np.nan) ax.plot(avals, cvals_lower, 'k', linewidth=0.5) ax.plot(avals, cvals_upper, 'k', linewidth=0.5) ax.fill_between(avals, cvals_lower, cvals_upper, color='0.9') ax.set_xlabel("$a$") ax.set_ylabel("$c$", rotation=0) ax.text(1.4, 160, "Unstable") ax.text(2.2, 100, "Stable") ax.text(3, 25, "Unstable") ax.axis('tight') ax.axis([1.35, 4, 0, 200]) # # (b) Bifurcation diagram # ax = fig.add_subplot(gs[0, 1]) # first row, second column ax.set_title("(b) Bifurcation diagram") # Create lists to hold the values of the different branches on the plot stable_H, unstable_H = [], [] # Equilibrium point lower_H, upper_H = [], [] # Limit cycle bounds # Set the values of 'a' to be denser near the bifurcation point avals = np.hstack( [np.linspace(1.35, 2, 10), np.linspace(2, 4, 100), np.linspace(4, 8, 20)]) # Set up the remaining parameters for the simulation timepts = np.linspace(0, 300, 5000) params = predprey_params # Compute the branches of the bifurcation diagram for a in avals: # Set the parameter values params['a'] = a # Equilibrium point from equations (4.33) and (4.34) r, d, b, k, c = map(predprey_params.get, ['r', 'd', 'b', 'k', 'c']) xeq = [(c*d) / (a*b - d), (b*c*r)*(a*b*k - c*d - d*k)/(k * (a*b - d)**2)] # Check stability if maxeig(a, params['c']) < 0: # Stable branch stable_H.append(xeq[0]) [vlist.append(np.nan) for vlist in [unstable_H, lower_H, upper_H]] else: # Unstable branch unstable_H.append(xeq[0]) stable_H.append(np.nan) # Run a simulation to figure out size of the limit cycle resp = ct.input_output_response( predprey, timepts, X0=np.array(xeq) + 0.1, params=params) lower_H.append(np.min(resp.outputs[0, -500:])) upper_H.append(np.max(resp.outputs[0, -500:])) # Plot the different branches ax.plot(avals, stable_H, 'b-') ax.plot(avals, unstable_H, 'r--') ax.plot(avals, lower_H, 'k-.') ax.plot(avals, upper_H, 'k-.') # Label the plot ax.set_xlabel("$a$") ax.set_ylabel("$H$", rotation=0) ax.axis('tight') ax.axis([1.35, 8, 0, 150]) # Save the figure plt.savefig("figure-5.18-predprey_bif.png", bbox_inches='tight')